想用家用等級顯卡在本地生成乾淨、穩定的 AI 插畫?這篇直接給你可匯入的 ComfyUI 工作流與參數建議,整個流程以 GGUF 量化版的 Qwen-Image 為核心,在 12GB VRAM 的環境中就能順跑 1024×768 單張生成。本文特點是流程精簡、全程不需 LoRA,並可直接使用中文提示詞,主要模型為 Qwen_Image-Q3_K_S.gguf,在效能與畫質之間取得良好平衡;文字編碼則採 Qwen2.5-VL-7B-Instruct-Q3_K_S.gguf,並搭配 qwen_image_vae.safetensors 做解碼輸出。注意!此模型是可以產生 NSFW 圖像的,請斟酌使用。
ComfyUI 的優勢在於以節點方式拼裝推論管線,整個流程「文字條件 → 取樣 → 解碼 → 輸出」都能一目了然,不僅方便除錯,也能快速更換模型或調整步數。以 Q3 量化模型為例,在 12GB 顯存上就能順暢運行,生成速度約一分多鐘即可完成,影像穩定度與邊緣表現也相當乾淨。若電腦顯存更充裕,可以嘗試提升步數,或改用更高等級的模型(如 Q4、Q5),畫面細節會更豐富。至於文字理解能力,若覺得模型對提示詞的掌握不足,也能升級文字編碼模型,不過這會額外佔用顯存並拉長生成時間。
環境配置與模型放置
請先完成 ComfyUI 的基本安裝並能開啟軟體介面(教學點我)。為了讀取 GGUF,我們僅需安裝 ComfyUI-GGUF 這組客製節點(提供 UnetLoaderGGUF 與 CLIPLoaderGGUF),安裝完成後務必重新啟動 ComfyUI,否則節點清單不會更新。
模型與路徑
- Diffusion(GGUF):
Qwen_Image-Q3_K_S.gguf[🔗 下載點]
📁 放置 →ComfyUI/models/diffusion_models/ - Text Encoder(GGUF):原檔
Qwen_Qwen2.5-VL-7B-Instruct-Q3_K_S.gguf,建議改名為
Qwen2.5-VL-7B-Instruct-Q3_K_S.gguf[🔗 下載點]
📁 放置 →ComfyUI/models/text_encoders/ - mmproj(GGUF):
Qwen2.5-VL-7B-Instruct-mmproj-BF16.gguf[🔗 下載點]
📁 放置 →ComfyUI/models/text_encoders/ - VAE:
qwen_image_vae.safetensors[🔗 下載點]
📁 放置 →ComfyUI/models/vae/
說明:為了在 12GB VRAM 上維持順暢,本文採用 Q3 量化版。若電腦顯存或 RAM 更充裕,可改用更高位寬或更大檔的模型,並把取樣步數拉高以換取更好的細節。
工作流重點與參數建議
整體流程非常直覺:以 UnetLoaderGGUF 載入 Qwen-Image(Q3),用 CLIPLoaderGGUF 載入 Qwen2.5-VL(Q3);正、負向提示詞分別由兩個 CLIP Text Encode 節點處理,負向提示詞建議放入常見去污詞,如「畸形、模糊、低品質、偽影」等,影像尺寸由 EmptySD3LatentImage 產生潛空間圖,接著把條件、模型與潛變量送入 KSampler 進行取樣,最後透過 VAE Decode 與 SaveImage 輸出圖片。本文範例的基礎設定為 1024×768、步數 10、取樣器 res_multistep、排程 simple、CFG 在 1~4 之間微調;顯存吃緊時請維持單張批量。若想提高精緻度,可以把步數拉到 15~20,或在正向提示加入更具體的光影與構圖語彙。
📝 工作流(QwenImageGGUF.json)
將下列內容複製到文字編輯器,儲存為 QwenImageGGUF.json 後即可在 ComfyUI 匯入。
{"id":"a3b0f2e8-7d8f-4e1c-9b33-12d6f1c7a9cd","revision":1,"last_node_id":11,"last_link_id":11,"nodes":[{"id":2,"type":"CLIPLoaderGGUF","pos":[20,160],"size":[340,120],"flags":{},"order":0,"mode":0,"inputs":[],"outputs":[{"name":"CLIP","type":"CLIP","slot_index":0,"links":[1,2]}],"properties":{"cnr_id":"comfyui-gguf","ver":"1.1.4","Node name for S&R":"CLIPLoaderGGUF","models":[{"name":"Qwen2.5-VL-7B-Instruct-Q4_K_S.gguf","url":"file://text_encoders/Qwen2.5-VL-7B-Instruct-Q4_K_S.gguf","directory":"text_encoders"}]},"widgets_values":["Qwen2.5-VL-7B-Instruct-Q3_K_S.gguf","qwen_image"]},{"id":3,"type":"VAELoader","pos":[19.118040084838867,334.3971252441406],"size":[330,60],"flags":{},"order":1,"mode":0,"inputs":[],"outputs":[{"name":"VAE","type":"VAE","slot_index":0,"links":[7]}],"properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"VAELoader","models":[{"name":"qwen_image_vae.safetensors","url":"file://vae/qwen_image_vae.safetensors","directory":"vae"}]},"widgets_values":["qwen_image_vae.safetensors"]},{"id":6,"type":"EmptySD3LatentImage","pos":[395.3247375488281,447.0367431640625],"size":[211.43600463867188,106],"flags":{},"order":2,"mode":0,"inputs":[],"outputs":[{"name":"LATENT","type":"LATENT","slot_index":0,"links":[6]}],"properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"EmptySD3LatentImage"},"widgets_values":[1024,768,1]},{"id":9,"type":"VAEDecode","pos":[621.8590087890625,450.3192443847656],"size":[140,100],"flags":{},"order":8,"mode":0,"inputs":[{"name":"samples","type":"LATENT","link":9},{"name":"vae","type":"VAE","link":7}],"outputs":[{"name":"IMAGE","type":"IMAGE","slot_index":0,"links":[10]}],"properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"VAEDecode"},"widgets_values":[]},{"id":8,"type":"KSampler","pos":[784.2811279296875,128.77174377441406],"size":[300,262],"flags":{},"order":7,"mode":0,"inputs":[{"name":"model","type":"MODEL","link":8},{"name":"positive","type":"CONDITIONING","link":3},{"name":"negative","type":"CONDITIONING","link":4},{"name":"latent_image","type":"LATENT","link":6}],"outputs":[{"name":"LATENT","type":"LATENT","slot_index":0,"links":[9]}],"properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"KSampler"},"widgets_values":[570849357276640,"randomize",10,1,"res_multistep","simple",1]},{"id":7,"type":"ModelSamplingAuraFlow","pos":[784.8612670898438,26.388885498046875],"size":[300,58],"flags":{},"order":6,"mode":0,"inputs":[{"name":"model","type":"MODEL","link":11}],"outputs":[{"name":"MODEL","type":"MODEL","links":[8]}],"properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"ModelSamplingAuraFlow"},"widgets_values":[3]},{"id":10,"type":"SaveImage","pos":[1102.9210205078125,30.788015365600586],"size":[441.4784240722656,491.4784240722656],"flags":{},"order":9,"mode":0,"inputs":[{"name":"images","type":"IMAGE","link":10}],"outputs":[],"properties":{"cnr_id":"comfy-core","ver":"0.3.59"},"widgets_values":["QwenImage/ComfyUI"],"color":"#233","bgcolor":"#355"},{"id":11,"type":"UnetLoaderGGUF","pos":[21.36621856689453,18.614456176757812],"size":[335.11993408203125,86.15998840332031],"flags":{},"order":3,"mode":0,"inputs":[],"outputs":[{"name":"MODEL","type":"MODEL","links":[11]}],"properties":{"cnr_id":"comfyui-gguf","ver":"1.1.4","Node name for S&R":"UnetLoaderGGUF"},"widgets_values":["Qwen_Image-Q3_K_S.gguf"]},{"id":5,"type":"CLIPTextEncode","pos":[385.74078369140625,234.67601013183594],"size":[375.2783508300781,160],"flags":{},"order":5,"mode":0,"inputs":[{"name":"clip","type":"CLIP","link":2}],"outputs":[{"name":"CONDITIONING","type":"CONDITIONING","slot_index":0,"links":[4]}],"title":"CLIP Text Encode (Negative)","properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"CLIPTextEncode"},"widgets_values":["畸形, 模糊, 低品質, 異常, 偽影"],"color":"#322","bgcolor":"#533"},{"id":4,"type":"CLIPTextEncode","pos":[385.7408752441406,24.839426040649414],"size":[373.1487731933594,161.06478881835938],"flags":{},"order":4,"mode":0,"inputs":[{"name":"clip","type":"CLIP","link":1}],"outputs":[{"name":"CONDITIONING","type":"CONDITIONING","slot_index":0,"links":[3]}],"title":"CLIP Text Encode (Positive)","properties":{"cnr_id":"comfy-core","ver":"0.3.59","Node name for S&R":"CLIPTextEncode"},"widgets_values":["一隻可愛的柴犬坐在公園長椅上,日系插畫風格"],"color":"#232","bgcolor":"#353"}],"links":[[1,2,0,4,0,"CLIP"],[2,2,0,5,0,"CLIP"],[3,4,0,8,1,"CONDITIONING"],[4,5,0,8,2,"CONDITIONING"],[6,6,0,8,3,"LATENT"],[7,3,0,9,1,"VAE"],[8,7,0,8,0,"MODEL"],[9,8,0,9,0,"LATENT"],[10,9,0,10,0,"IMAGE"],[11,11,0,7,0,"MODEL"]],"groups":[],"config":{},"extra":{"ds":{"scale":0.9090909090909091,"offset":[41.05623298094109,71.10242663728752]},"frontendVersion":"1.25.11","VHS_latentpreview":false,"VHS_latentpreviewrate":0,"VHS_MetadataImage":true,"VHS_KeepIntermediate":true},"version":0.4}

▲ ComfyUI 的工作流截圖。該工作流就是在 12GB VRAM 上以 ComfyUI 結合 Qwen-Image(Q3 量化)完成本地圖片生成的完整做法。若你想擴充到更複雜的主題或風格,僅需替換提示詞或提高步數即可;若需要更大的解析度,建議先確保顯存充足,再逐步提高影像尺寸或使用的模型等級,並觀察取樣時間與畫質之間的平衡。
中文提示詞示範與生成成果
以下九張示範皆由相同流程生成,提示詞完全以中文撰寫。這次用到的提示詞如下:
1. 一隻可愛的柴犬坐在公園長椅上,日系插畫風格
2. 一隻胖胖的橘貓蜷縮在窗邊的坐墊上,日系插畫風格
3. 一個穿著水手服的少女手捧著氣球,站在海邊的木棧道上,日系插畫風格
4. 一隻小狐狸趴在滿是落葉的石階上,抬頭望著天空,日系插畫風格
5. 一位戴著圓眼鏡的少年正在咖啡廳裡看書,桌上有一杯熱咖啡,日系插畫風格
6. 一隻小企鵝在雪地上玩耍,旁邊有一個小雪人,日系插畫風格
7. 一個少女撐著透明雨傘走在櫻花雨下的街道上,日系插畫風格
8. 一隻貓頭鷹站在圖書館的書架上,背景是溫暖的黃燈光,日系插畫風格
9. 一對情侶並肩坐在河畔,看著夕陽的倒影灑落在水面上,日系插畫風格

▲ 一隻可愛的柴犬坐在公園長椅上,日系插畫風格。背景綠意與陽光斑駁讓畫面很有午後的輕鬆感,木椅的木紋細節與柴犬的臉部表情都相當穩定,邊緣過渡自然,顏色乾淨不堆疊。

▲ 一隻胖胖的橘貓蜷縮在窗邊的坐墊上,日系插畫風格。窗外的柔光製造溫暖的高光區域,毛髮層次與花紋的銜接很平滑,坐墊的布料與陰影也保持乾淨的筆觸,整體極具療癒感。

▲ 一個穿著水手服的少女手捧著氣球,站在海邊木棧道上,日系插畫風格。海天線明確、雲朵鬆軟,裙擺與髮絲因海風微動,構圖留白剛好,色彩清爽而且具有夏日氣息。

▲ 一隻小狐狸趴在滿是落葉的石階上,抬頭望著天空,日系插畫風格。金黃與橘紅的落葉與狐狸毛色相互呼應,階梯的粗糙質地與柔焦背景讓季節感十分明確。

▲ 一位戴著圓眼鏡的少年正在咖啡廳裡看書,桌上有一杯熱咖啡,日系插畫風格。景深將背景柔化,把注意力集中在人物與書本,杯盤與紙張的材質處理細膩,氛圍安靜而專注。

▲ 一隻小企鵝在雪地上玩耍,旁邊有一個小雪人,日系插畫風格。雪花粒子與地面反光處理俏皮清透,角色表情靈動可愛,對比度恰到好處,整體畫面乾淨且無明顯噪點。

▲ 一個少女撐著透明雨傘走在櫻花雨下的街道上,日系插畫風格。粉色花瓣與路面濕潤的高光交織,人物邊緣光柔和,從構圖到氣氛都呈現輕盈與浪漫。

▲ 一隻貓頭鷹站在圖書館的書架上,背景是溫暖的黃燈光,日系插畫風格。羽毛紋理與眼神聚焦清晰,暖黃光影讓空間顯得沉靜,書脊排布提供了良好的規律感。

▲ 一對情侶並肩坐在河畔,看著夕陽的倒影灑落在水面上,日系插畫風格。逆光邊緣光與水面反射自然,前景草叢作為框景增添層次,整體情緒柔和而細膩。

▲ 九張示範的縮圖拼接總覽,日系插畫風格在光影、邊緣與色塊的穩定度表現都相當不錯,搭配 Q3 量化基本能兼顧速度與細節。
常見問題
若節點顯示紅色通常是缺少 GGUF 相關自訂節點或模型路徑錯誤,請重新確認並重啟 ComfyUI。臉部或手部偶發崩壞時,可略增步數並在負向提示加上「錯位、額外手指、畸形」等詞;畫面偏平時,提升步數與 CFG,或在提示詞加入「逆光、邊緣光、柔焦散景、菲林顆粒」等描述,能讓層次更豐富。
💭 更多應用
Qwen-Image 作為文生圖模型,最大的特色就是能夠直接理解中文提示詞並生成高品質插畫。除了基礎的入門教學外,我們也持續整理各種「應用篇」,透過不同主題的實際案例,展示模型在角色、場景、氛圍等多方面的創作能力。以下是目前已發布的應用示範:
👉 ComfyUI x Qwen-Image:中文提示詞之動漫少女生成示範(應用篇)
👉 ComfyUI x Qwen-Image:中文提示詞之動漫少年生成示範(應用篇)
👉 ComfyUI x Qwen-Image:中文提示詞之日系少女生成示範(應用篇)
👉 ComfyUI x Qwen-Image:中文提示詞之動漫風格中英文字生成示範(應用篇)
👉 ComfyUI x Qwen-Image:中文提示詞之真人風格中英文字生成示範(應用篇)
《上一篇》ComfyUI x Qwen-Image-Edit:套用各種日系濾鏡風格(應用篇)
《下一篇》ComfyUI x Qwen-Image:中文提示詞之動漫少女生成示範(應用篇) 









留言區 / Comments
萌芽論壇